Stéphane Descombes
Stéphane Descombes
Université Côte d'Azur
Verified email at - Homepage
Cited by
Cited by
Order estimates in time of splitting methods for the nonlinear Schrödinger equation
C Besse, B Bidégaray, S Descombes
SIAM Journal on Numerical Analysis 40 (1), 26-40, 2002
On the well-posedness for the Euler-Korteweg model in several space dimensions
S Benzoni-Gavage, R Danchin, S Descombes
Indiana University Mathematics Journal, 1499-1579, 2007
Splitting methods with complex times for parabolic equations
F Castella, P Chartier, S Descombes, G Vilmart
BIT Numerical Mathematics 49, 487-508, 2009
Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations
X Antoine, C Besse, S Descombes
SIAM journal on numerical analysis 43 (6), 2272-2293, 2006
Structure of Korteweg models and stability of diffuse interfaces
S Benzoni-Gavage, L Mazet, S Descombes, D Jamet
Interfaces and free boundaries 7 (4), 371-414, 2005
Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction
S Descombes, M Massot
Numerische Mathematik 97, 667-698, 2004
Convergence of a splitting method of high order for reaction-diffusion systems
S Descombes
Mathematics of Computation 70 (236), 1481-1501, 2001
Well-posedness of one-dimensional Korteweg models.
S Benzoni-Gavage, R Danchin, S Descombes
Electronic Journal of Differential Equations (EJDE)[electronic only] 2006 …, 2006
Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell’s equations
S Descombes, S Lanteri, L Moya
Journal of Scientific Computing 56, 190-218, 2013
An integro-differential formulation for magnetic induction in bounded domains: boundary element–finite volume method
AB Iskakov, S Descombes, E Dormy
Journal of Computational Physics 197 (2), 540-554, 2004
An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical …
S Descombes, M Thalhammer
BIT Numerical Mathematics 50 (4), 729-749, 2010
New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution, and dedicated high order implicit/explicit time integrators
M Duarte, M Massot, S Descombes, C Tenaud, T Dumont, V Louvet, ...
SIAM Journal on Scientific Computing 34 (1), A76-A104, 2012
A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations
M Duarte, Z Bonaventura, M Massot, A Bourdon, S Descombes, T Dumont
Journal of Computational Physics 231 (3), 1002-1019, 2012
The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations …
S Descombes, M Thalhammer
IMA Journal of Numerical Analysis 33 (2), 722-745, 2013
Simulation of human ischemic stroke in realistic 3D geometry
T Dumont, M Duarte, S Descombes, MA Dronne, M Massot, V Louvet
Communications in Nonlinear Science and Numerical Simulation 18 (6), 1539-1557, 2013
Strang's formula for holomorphic semi-groups
S Descombes, M Schatzman
Journal de mathématiques pures et appliquées 81 (1), 93-114, 2002
Time–space adaptive numerical methods for the simulation of combustion fronts
M Duarte, S Descombes, C Tenaud, S Candel, M Massot
Combustion and Flame 160 (6), 1083-1101, 2013
Adaptive time splitting method for multi-scale evolutionary partial differential equations
S Descombes, M Duarte, T Dumont, V Louvet, M Massot
Confluentes Mathematici 3 (03), 413-443, 2011
Energy-preserving methods for nonlinear Schrödinger equations
C Besse, S Descombes, G Dujardin, I Lacroix-Violet
IMA Journal of Numerical Analysis 41 (1), 618-653, 2021
An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations
A Christophe, S Descombes, S Lanteri
Applied Mathematics and Computation 319, 395-408, 2018
The system can't perform the operation now. Try again later.
Articles 1–20