Stebėti
Robert Jendersie
Pavadinimas
Cituota
Cituota
Metai
DNN-MG: A hybrid neural network/finite element method with applications to 3D simulations of the Navier–Stokes equations
N Margenberg, R Jendersie, C Lessig, T Richter
Computer Methods in Applied Mechanics and Engineering 420, 116692, 2024
62024
Deep neural networks for geometric multigrid methods
N Margenberg, R Jendersie, T Richter, C Lessig
arXiv preprint arXiv:2106.07687, 2021
32021
NeuroPNM: Model reduction of pore network models using neural networks
R Jendersie, A Mjalled, X Lu, L Reineking, A Kharaghani, M Mönnigmann, ...
Particuology 86, 239-251, 2024
22024
The neural network multigrid solver for the Navier-Stokes equations and its application to 3D simulation
N Margenberg, R Jendersie, CL Lessig, TR Richter
ECCOMAS Congress 2022-8th European Congress on Computational Methods in …, 0
1
A GPU-parallelization of the neXtSIM-DG dynamical core (v0. 3.1)
R Jendersie, C Lessig, T Richter
EGUsphere 2024, 1-32, 2024
2024
Towards a GPU-Parallelization of the neXtSIM-DG Dynamical Core
R Jendersie, C Lessig, T Richter
Proceedings of the Platform for Advanced Scientific Computing Conference, 1-10, 2024
2024
A comparison of numerical methods for model reduction of dense discrete-time systems
R Jendersie, SWR Werner
at-Automatisierungstechnik 69 (8), 683-694, 2021
2021
Hybrid Finite Element/Neural Network Simulations
R Jendersie, U Kapustsin, U Kaya, C Lessig, N Margenberg, D Hartmann
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–8