Stebėti
Edward Grefenstette
Edward Grefenstette
Director of Research, Google DeepMind | Honorary Professor, UCL
Patvirtintas el. paštas google.com - Pagrindinis puslapis
Pavadinimas
Cituota
Cituota
Metai
A convolutional neural network for modelling sentences
N Kalchbrenner, E Grefenstette, P Blunsom
arXiv preprint arXiv:1404.2188, 2014
46852014
Teaching machines to read and comprehend
KM Hermann, T Kocisky, E Grefenstette, L Espeholt, W Kay, M Suleyman, ...
Advances in neural information processing systems 28, 2015
35512015
Hybrid computing using a neural network with dynamic external memory
A Graves, G Wayne, M Reynolds, T Harley, I Danihelka, ...
Nature 538 (7626), 471-476, 2016
17402016
Reasoning about entailment with neural attention
T Rocktäschel, E Grefenstette, KM Hermann, T Kočiský, P Blunsom
arXiv preprint arXiv:1509.06664, 2015
8612015
The narrativeqa reading comprehension challenge
T Kočiský, J Schwarz, P Blunsom, C Dyer, KM Hermann, G Melis, ...
Transactions of the Association for Computational Linguistics 6, 317-328, 2018
5182018
Learning explanatory rules from noisy data
R Evans, E Grefenstette
Journal of Artificial Intelligence Research 61, 1-64, 2018
5022018
Latent predictor networks for code generation
W Ling, E Grefenstette, KM Hermann, T Kočiský, A Senior, F Wang, ...
arXiv preprint arXiv:1603.06744, 2016
3922016
Experimental support for a categorical compositional distributional model of meaning
E Grefenstette, M Sadrzadeh
arXiv preprint arXiv:1106.4058, 2011
3752011
Learning to transduce with unbounded memory
E Grefenstette, KM Hermann, M Suleyman, P Blunsom
Advances in neural information processing systems 28, 2015
3192015
Discovering discrete latent topics with neural variational inference
Y Miao, E Grefenstette, P Blunsom
International conference on machine learning, 2410-2419, 2017
3022017
Analysing mathematical reasoning abilities of neural models
D Saxton, E Grefenstette, F Hill, P Kohli
arXiv preprint arXiv:1904.01557, 2019
2792019
A survey of reinforcement learning informed by natural language
J Luketina, N Nardelli, G Farquhar, J Foerster, J Andreas, E Grefenstette, ...
arXiv preprint arXiv:1906.03926, 2019
2322019
Learning to compose words into sentences with reinforcement learning
D Yogatama, P Blunsom, C Dyer, E Grefenstette, W Ling
arXiv preprint arXiv:1611.09100, 2016
1862016
A survey of zero-shot generalisation in deep reinforcement learning
R Kirk, A Zhang, E Grefenstette, T Rocktäschel
Journal of Artificial Intelligence Research 76, 201-264, 2023
183*2023
Learning to Understand Goal Specifications by Modelling Reward
D Bahdanau, F Hill, J Leike, E Hughes, P Kohli, E Grefenstette
arXiv preprint arXiv:1806.01946, 2018
165*2018
Multi-step regression learning for compositional distributional semantics
E Grefenstette, G Dinu, YZ Zhang, M Sadrzadeh, M Baroni
arXiv preprint arXiv:1301.6939, 2013
1522013
Generalized inner loop meta-learning
E Grefenstette, B Amos, D Yarats, PM Htut, A Molchanov, F Meier, D Kiela, ...
arXiv preprint arXiv:1910.01727, 2019
1332019
Can neural networks understand logical entailment?
R Evans, D Saxton, D Amos, P Kohli, E Grefenstette
arXiv preprint arXiv:1802.08535, 2018
1332018
Learning with amigo: Adversarially motivated intrinsic goals
A Campero, R Raileanu, H Küttler, JB Tenenbaum, T Rocktäschel, ...
arXiv preprint arXiv:2006.12122, 2020
1162020
Compile: Compositional imitation learning and execution
T Kipf, Y Li, H Dai, V Zambaldi, A Sanchez-Gonzalez, E Grefenstette, ...
International Conference on Machine Learning, 3418-3428, 2019
115*2019
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20