Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations S Jin, H Wu, X Yang Communications in Mathematical Sciences 6 (4), 995-1020, 2008 | 80 | 2008 |

Convergence of frozen Gaussian approximation for high‐frequency wave propagation J Lu, X Yang Communications on Pure and Applied Mathematics 65 (6), 759-789, 2012 | 49 | 2012 |

Frozen Gaussian approximation for high frequency wave propagation J Lu, X Yang arXiv preprint arXiv:1010.1968, 2010 | 48 | 2010 |

Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials S Jin, H Wu, X Yang, Z Huang Journal of Computational Physics 229 (13), 4869-4883, 2010 | 35 | 2010 |

A simple model for biological aggregation with asymmetric sensing PA Milewski, X Yang Communications in Mathematical Sciences 6 (2), 397-416, 2008 | 35 | 2008 |

Wave-equation-based travel-time seismic tomography–Part 1: Method P Tong, D Zhao, D Yang, X Yang, J Chen, Q Liu Solid Earth 5 (2), 1151-1168, 2014 | 34 | 2014 |

Frozen Gaussian approximation for general linear strictly hyperbolic systems: formulation and Eulerian methods J Lu, X Yang Multiscale Modeling & Simulation 10 (2), 451-472, 2012 | 32 | 2012 |

A numerical study of the Gaussian beam methods for Schrödinger-Poisson equations S Jin, H Wu, X Yang Journal of Computational Mathematics, 261-272, 2010 | 29 | 2010 |

Semi-Eulerian and high order Gaussian beam methods for the Schrödinger equation in the semiclassical regime S Jin, H Wu, X Yang Communications in Computational Physics 9 (3), 668-687, 2011 | 28 | 2011 |

Gradient recovery for elliptic interface problem: II. Immersed finite element methods H Guo, X Yang Journal of Computational Physics 338, 606-619, 2017 | 27 | 2017 |

A Pathway-Based Mean-Field Model for *E. coli* Chemotaxis: Mathematical Derivation and Its Hyperbolic and Parabolic LimitsG Si, M Tang, X Yang Multiscale Modeling & Simulation 12 (2), 907-926, 2014 | 25 | 2014 |

Acoustic wave-equation-based earthquake location P Tong, D Yang, Q Liu, X Yang, J Harris Geophysical Supplements to the Monthly Notices of the Royal Astronomical …, 2016 | 21 | 2016 |

Computation of the Schrödinger equation in the semiclassical regime on an unbounded domain X Yang, J Zhang SIAM Journal on Numerical Analysis 52 (2), 808-831, 2014 | 21 | 2014 |

Numerical study of a domain decomposition method for a two-scale linear transport equation X Yang, F Golse, Z Huang, S Jin Networks & Heterogeneous Media 1 (1), 143, 2006 | 19 | 2006 |

Tailored finite point method for first order wave equation Z Huang, X Yang Journal of Scientific Computing 49 (3), 351-366, 2011 | 17 | 2011 |

A mean-field model for spin dynamics in multilayered ferromagnetic media J Chen, CJ GarcÍa-Cervera, X Yang Multiscale Modeling & Simulation 13 (2), 551-570, 2015 | 15 | 2015 |

Computation of the semiclassical limit of the Schrödinger equation with phase shift by a level set method S Jin, X Yang Journal of Scientific Computing 35 (2), 144-169, 2008 | 15 | 2008 |

Frozen Gaussian approximation for 3-D seismic wave propagation L Chai, P Tong, X Yang Geophysical Journal International 208 (1), 59-74, 2017 | 14 | 2017 |

Superconvergence of partially penalized immersed finite element methods H Guo, X Yang, Z Zhang IMA Journal of Numerical Analysis 38 (4), 2123-2144, 2018 | 12 | 2018 |

Polynomial preserving recovery for high frequency wave propagation H Guo, X Yang Journal of Scientific Computing 71 (2), 594-614, 2017 | 12 | 2017 |