Stebėti
Karl Tuyls
Karl Tuyls
Research Scientist, Entrepreneur, ex-Google DeepMind, Prof at University of Liverpool
Patvirtintas el. paštas hcompany.ai - Pagrindinis puslapis
Pavadinimas
Cituota
Cituota
Metai
Value-decomposition networks for cooperative multi-agent learning
P Sunehag, G Lever, A Gruslys, WM Czarnecki, V Zambaldi, M Jaderberg, ...
arXiv preprint arXiv:1706.05296, 2017
19412017
A unified game-theoretic approach to multiagent reinforcement learning
M Lanctot, V Zambaldi, A Gruslys, A Lazaridou, K Tuyls, J Pérolat, D Silver, ...
Advances in neural information processing systems 30, 2017
7792017
Credit card fraud detection using Bayesian and neural networks
S Maes, K Tuyls, B Vanschoenwinkel, B Manderick
Proceedings of the 1st international naiso congress on neuro fuzzy …, 2002
5842002
Deep reinforcement learning with relational inductive biases
V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li, I Babuschkin, K Tuyls, ...
International conference on learning representations, 2019
529*2019
Multiagent learning: Basics, challenges, and prospects
K Tuyls, G Weiss
Ai Magazine 33 (3), 41-41, 2012
4202012
Evolutionary dynamics of multi-agent learning: A survey
D Bloembergen, K Tuyls, D Hennes, M Kaisers
Journal of Artificial Intelligence Research 53, 659-697, 2015
3702015
The mechanics of n-player differentiable games
D Balduzzi, S Racaniere, J Martens, J Foerster, K Tuyls, T Graepel
International Conference on Machine Learning, 354-363, 2018
3292018
OpenSpiel: A framework for reinforcement learning in games
M Lanctot, E Lockhart, JB Lespiau, V Zambaldi, S Upadhyay, J Pérolat, ...
arXiv preprint arXiv:1908.09453, 2019
2802019
Inequity aversion improves cooperation in intertemporal social dilemmas
E Hughes, JZ Leibo, M Phillips, K Tuyls, E Dueñez-Guzman, ...
Advances in neural information processing systems 31, 2018
2692018
Emergence of linguistic communication from referential games with symbolic and pixel input
A Lazaridou, KM Hermann, K Tuyls, S Clark
arXiv preprint arXiv:1804.03984, 2018
2562018
Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment
KN McGuire, C De Wagter, K Tuyls, HJ Kappen, GCHE de Croon
Science Robotics 4 (35), eaaw9710, 2019
2522019
Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone
K McGuire, G De Croon, C De Wagter, K Tuyls, H Kappen
IEEE Robotics and Automation Letters 2 (2), 1070-1076, 2017
2432017
A multi-agent reinforcement learning model of common-pool resource appropriation
J Perolat, JZ Leibo, V Zambaldi, C Beattie, K Tuyls, T Graepel
Advances in neural information processing systems 30, 2017
2332017
Mastering the game of Stratego with model-free multiagent reinforcement learning
J Perolat, B De Vylder, D Hennes, E Tarassov, F Strub, V de Boer, ...
Science 378 (6623), 990-996, 2022
2212022
Lenient multi-agent deep reinforcement learning
G Palmer, K Tuyls, D Bloembergen, R Savani
arXiv preprint arXiv:1707.04402, 2017
2192017
Emergent communication through negotiation
K Cao, A Lazaridou, M Lanctot, JZ Leibo, K Tuyls, S Clark
arXiv preprint arXiv:1804.03980, 2018
1962018
What evolutionary game theory tells us about multiagent learning
K Tuyls, S Parsons
Artificial Intelligence 171 (7), 406-416, 2007
1962007
A selection-mutation model for q-learning in multi-agent systems
K Tuyls, K Verbeeck, T Lenaerts
Proceedings of the second international joint conference on Autonomous …, 2003
1902003
An evolutionary dynamical analysis of multi-agent learning in iterated games
K Tuyls, PJT Hoen, B Vanschoenwinkel
Autonomous Agents and Multi-Agent Systems 12, 115-153, 2006
1752006
Inference of concise DTDs from XML data
GJ Bex, F Neven, T Schwentick, K Tuyls
ACM Press, 2006
1742006
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20