Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems M Feischl, T Führer, D Praetorius SIAM Journal on Numerical Analysis 52 (2), 601-625, 2014 | 92 | 2014 |
Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity M Aurada, M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius Computational Mechanics 51 (4), 399-419, 2013 | 74 | 2013 |
Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods M Aurada, M Feischl, T Führer, M Karkulik, D Praetorius Computational Methods in Applied Mathematics 13 (3), 305-332, 2013 | 61 | 2013 |
Space–time least-squares finite elements for parabolic equations T Führer, M Karkulik Computers & Mathematics with Applications 92, 27-36, 2021 | 56 | 2021 |
Adaptive boundary element methods: a posteriori error estimators, adaptivity, convergence, and implementation M Feischl, T Führer, N Heuer, M Karkulik, D Praetorius Archives of Computational Methods in Engineering 22 (3), 309-389, 2015 | 53 | 2015 |
Multiscale modeling in micromagnetics: Existence of solutions and numerical integration F Bruckner, D Suess, M Feischl, T Führer, P Goldenits, M Page, ... Mathematical Models and Methods in Applied Sciences 24 (13), 2627-2662, 2014 | 49 | 2014 |
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius Calcolo 51, 531-562, 2014 | 43 | 2014 |
Energy norm based error estimators for adaptive BEM for hypersingular integral equations M Aurada, M Feischl, T Führer, M Karkulik, D Praetorius Applied Numerical Mathematics 95, 15-35, 2015 | 42 | 2015 |
An ultraweak formulation of the Kirchhoff–Love plate bending model and DPG approximation T Führer, N Heuer, A Niemi Mathematics of Computation 88 (318), 1587-1619, 2019 | 37 | 2019 |
Local inverse estimates for non-local boundary integral operators M Aurada, M Feischl, T Führer, M Karkulik, J Melenk, D Praetorius Mathematics of Computation 86 (308), 2651-2686, 2017 | 35 | 2017 |
A time-stepping DPG scheme for the heat equation T Führer, N Heuer, J Sen Gupta Computational Methods in Applied Mathematics 17 (2), 237-252, 2017 | 34 | 2017 |
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius | 29 | 2015 |
HILBERT — a MATLAB implementation of adaptive 2D-BEM: HILBERT Is a Lovely Boundary Element Research Tool M Aurada, M Ebner, M Feischl, S Ferraz-Leite, T Führer, P Goldenits, ... Numerical Algorithms 67, 1-32, 2014 | 28 | 2014 |
Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations F Bruckner, C Vogler, B Bergmair, T Huber, M Fuger, D Suess, M Feischl, ... Journal of magnetism and magnetic materials 343, 163-168, 2013 | 28 | 2013 |
The double adaptivity paradigm:(How to circumvent the discrete inf–sup conditions of Babuška and Brezzi) L Demkowicz, T Führer, N Heuer, X Tian Computers & Mathematics with Applications 95, 41-66, 2021 | 25 | 2021 |
Adaptive boundary element methods for optimal convergence of point errors M Feischl, G Gantner, A Haberl, D Praetorius, T Führer Numerische Mathematik 132, 541-567, 2016 | 25 | 2016 |
On the DPG method for Signorini problems T Führer, N Heuer, EP Stephan IMA Journal of Numerical Analysis 38 (4), 1893-1926, 2018 | 23 | 2018 |
Fully discrete DPG methods for the Kirchhoff–Love plate bending model T Führer, N Heuer Computer Methods in Applied Mechanics and Engineering 343, 550-571, 2019 | 22 | 2019 |
Superconvergence in a DPG method for an ultra-weak formulation T Führer Computers & Mathematics with Applications 75 (5), 1705-1718, 2018 | 21 | 2018 |
Robust coupling of DPG and BEM for a singularly perturbed transmission problem T Führer, N Heuer Computers & Mathematics with Applications 74 (8), 1940-1954, 2017 | 21 | 2017 |