The moments of Minkowski question mark function: the dyadic period function G Alkauskas Glasgow Mathematical Journal 52 (01), 41-64, 2010 | 30* | 2010 |

The Minkowski question mark function: explicit series for the dyadic period function and moments G Alkauskas Mathematics of Computation 79 (269), 383-418, 2010 | 27* | 2010 |

Prime and composite numbers as integer parts of powers G Alkauskas, A Dubickas Acta Mathematica Hungarica 105 (3), 249-256, 2004 | 19 | 2004 |

An asymptotic formula for the moments of the Minkowski question mark function in the interval [0, 1] G Alkauskas Lithuanian Mathematical Journal 48 (4), 357-367, 2008 | 14 | 2008 |

Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function G Alkauskas The Ramanujan Journal 25 (3), 359-367, 2011 | 13 | 2011 |

The Minkowski ?(x) function and Salemʼs problem G Alkauskas Comptes Rendus Mathematique 350 (3), 137-140, 2012 | 12 | 2012 |

Generating and zeta functions, structure, spectral and analytic properties of the moments of Minkowski question mark function G Alkauskas Involve 2 (2), 121-159, 2009 | 12 | 2009 |

Multi-variable translation equation which arises from homothety G Alkauskas Aequationes mathematicae 80 (3), 335-350, 2010 | 10 | 2010 |

The projective translation equation and unramified 2-dimensional flows with rational vector fields G Alkauskas Aequationes mathematicae 89 (3), 873-913, 2015 | 9 | 2015 |

The projective translation equation and rational plane flows. I G Alkauskas Aequationes mathematicae 85 (3), 273-328, 2013 | 9 | 2013 |

Integral transforms of the Minkowski question mark function G Alkauskas University of Nottingham, 2008 | 8 | 2008 |

Algebraic and abelian solutions to the projective translation equation G Alkauskas Aequationes mathematicae 90 (4), 727-763, 2016 | 7 | 2016 |

Transfer operator for the Gauss' continued fraction map. I. Structure of the eigenvalues and trace formulas G Alkauskas arXiv preprint arXiv:1210.4083, 2012 | 6* | 2012 |

Planar 2-homogeneous commutative rational vector fields G Alkauskas Electronic Journal of Differential Equations 2018 (No. 138), pp. 1-21, 2018 | 5* | 2018 |

Projective superflows. II. and the icosahedral group G Alkauskas http://arxiv.org/abs/1606.05772, 2016 | 5 | 2016 |

Generalization of the Rödseth–Gupta Theorem on Binary Partitions G Alkauskas Lithuanian Mathematical Journal 43 (2), 103-110, 2003 | 5 | 2003 |

The projective translation equation and rational plane flows. II. Corrections and additions G Alkauskas Aequationes mathematicae 91 (5), 871-907, 2017 | 4 | 2017 |

Projective superflows. III. Finite subgroups of G Alkauskas arXiv preprint arXiv:1608.02522, 2016 | 4 | 2016 |

A Curious Proof of Fermat's Little Theorem G Alkauskas The American Mathematical Monthly 116 (4), 362-364, 2009 | 4 | 2009 |

Dirichlet Series Associated with Strongly *q*-Multiplicative FunctionsG Alkauskas The Ramanujan Journal 8 (1), 13-21, 2004 | 4 | 2004 |