Flexible statistical inference for mechanistic models of neural dynamics JM Lueckmann, PJ Goncalves, G Bassetto, K Öcal, M Nonnenmacher, ... Advances in neural information processing systems 30, 2017 | 255 | 2017 |
SBI--A toolkit for simulation-based inference A Tejero-Cantero, J Boelts, M Deistler, JM Lueckmann, C Durkan, ... arXiv preprint arXiv:2007.09114, 2020 | 253 | 2020 |
Ostracism Online: A social media ostracism paradigm W Wolf, A Levordashka, JR Ruff, S Kraaijeveld, JM Lueckmann, ... Behavior Research Methods 47, 361-373, 2015 | 217 | 2015 |
Training deep neural density estimators to identify mechanistic models of neural dynamics PJ Gonçalves, JM Lueckmann, M Deistler, M Nonnenmacher, K Öcal, ... Elife 9, e56261, 2020 | 198 | 2020 |
Benchmarking Simulation-Based Inference JM Lueckmann, J Boelts, DS Greenberg, PJ Gonçalves, JH Macke Proceedings of The 24th International Conference on Artificial Intelligence …, 2021 | 180 | 2021 |
Likelihood-free inference with emulator networks JM Lueckmann, G Bassetto, T Karaletsos, JH Macke Proceedings of Machine Learning Research 96, 32–53, 2019 | 130 | 2019 |
p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury EM Floriddia, KI Rathore, A Tedeschi, G Quadrato, A Wuttke, ... Journal of Neuroscience 32 (40), 13956-13970, 2012 | 59 | 2012 |
Can serial dependencies in choices and neural activity explain choice probabilities? JM Lueckmann, JH Macke, H Nienborg Journal of Neuroscience 38 (14), 3495-3506, 2018 | 50 | 2018 |
Flexible and efficient simulation-based inference for models of decision-making J Boelts, JM Lueckmann, R Gao, JH Macke Elife 11, e77220, 2022 | 45 | 2022 |
GATSBI: Generative adversarial training for simulation-based inference P Ramesh, JM Lueckmann, J Boelts, Á Tejero-Cantero, DS Greenberg, ... arXiv preprint arXiv:2203.06481, 2022 | 33 | 2022 |
Pre-stimulus phase and amplitude regulation of phase-locked responses are maximized in the critical state AE Avramiea, R Hardstone, JM Lueckmann, J Bím, HD Mansvelder, ... Elife 9, e53016, 2020 | 21 | 2020 |
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics JM Lueckmann, J Boelts, D Greenberg, P Goncalves, J Macke, ... PMLR, 2021 | 20 | 2021 |
Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making H Park, JM Lueckmann, K von Kriegstein, S Bitzer, SJ Kiebel Scientific reports 6 (1), 18832, 2016 | 19 | 2016 |
Advances in Neural Information Processing Systems JM Lueckmann, PJ Goncalves, G Bassetto, K Öcal, M Nonnenmacher, ... Go to reference in article, 2017 | 13 | 2017 |
Training deep neural density estimators to identify mechanistic models of neural dynamics. bioRxiv PJ Gonçalves, JM Lueckmann, M Deistler, M Nonnenmacher, K Öcal, ... | 12 | 2019 |
Likelihood-free inference with emulator networks. arxiv e-prints J Lueckmann, G Bassetto, T Karaletsos, J Macke arXiv preprint arXiv:1805.09294, 2019 | 9 | 2019 |
Comparing neural simulations by neural density estimation J Boelts, JM Lueckmann, PJ Goncalves, H Sprekeler, JH Macke 2019 Conference on Cognitive Computational Neuroscience. Berlin, Germany …, 2019 | 5 | 2019 |
Flexible statistical inference for mechanistic models of neural dynamics. arXiv JM Lueckmann, PJ Goncalves, G Bassetto, K Ocal, M Nonnenmacher, ... arXiv preprint arXiv:1711.01861, 2017 | 5 | 2017 |
Simulation-based inference for neuroscience and beyond JM Lückmann Universität Tübingen, 2022 | 4 | 2022 |
Statistical inference for analyzing sloppiness in neuroscience models M Deistler, GJ Pedro, JM Lueckmann, K Oecal, DS Greenberg, JH Macke Bernstein Conference 2019, Berlin, Germany, 2019 | 2 | 2019 |