Follow
Théophile CHAUMONT-FRELET
Théophile CHAUMONT-FRELET
Verified email at inria.fr - Homepage
Title
Cited by
Cited by
Year
Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems
T Chaumont-Frelet, S Nicaise
IMA Journal of Numerical Analysis 40 (2), 1503-1543, 2020
472020
Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation
H Barucq, T Chaumont-Frelet, C Gout
Mathematics of Computation 86 (307), 2129-2157, 2017
452017
High-frequency behaviour of corner singularities in Helmholtz problems
T Chaumont-Frelet, S Nicaise
ESAIM: Mathematical Modelling and Numerical Analysis 52 (5), 1803-1845, 2018
372018
Finite element approximation of Helmholtz problems with application to seismic wave propagation
T Chaumont-Frelet
PhD thesis, Rouen, INSA, 2015. HAL Id: tel-01246244. Available at https …, 0
29*
On high order methods for the heterogeneous Helmholtz equation
T Chaumont-Frelet
Computers & Mathematics with Applications 72 (9), 2203-2225, 2016
232016
A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains
T Chaumont-Frelet, F Valentin
SIAM Journal on Numerical Analysis 58 (2), 1029-1067, 2020
192020
Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers
T Chaumont-Frelet, D Gallistl, S Nicaise, J Tomezyk
Communications in Mathematical Sciences 20 (1), 1-52, 2022
18*2022
Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids
T Chaumont-Frelet, D Pardo, Á Rodríguez-Rozas
Computational Geosciences 22, 1161-1174, 2018
142018
Stable broken H (curl) polynomial extensions and p-robust a posteriori error estimates by broken patchwise equilibration for the curl-curl problem.
T Chaumont-Frelet, A Ern, M Vohralík
Math. Comput. 91 (333), 37-74, 2022
12*2022
On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation
T Chaumont-Frelet, A Ern, M Vohralík
Numerische Mathematik 148 (3), 525-573, 2021
112021
A painless automatic hp-adaptive strategy for elliptic problems
V Darrigrand, D Pardo, T Chaumont-Frelet, I Gómez-Revuelto, ...
Finite Elements in Analysis and Design 178, 103424, 2020
112020
Polynomial-degree-robust -stability of discrete minimization in a tetrahedron
T Chaumont-Frelet, A Ern, M Vohralík
Comptes Rendus. Mathématique 358 (9-10), 1101-1110, 2020
102020
Finite element approximation of electromagnetic fields using nonfitting meshes for geophysics
T Chaumont-Frelet, S Nicaise, D Pardo
SIAM Journal on Numerical Analysis 56 (4), 2288-2321, 2018
102018
Uniform a priori estimates for elliptic problems with impedance boundary conditions
T Chaumont-Frelet, S Nicaise, J Tomezyk
Communications on Pure and Applied Analysis, 2020
72020
Flux approximation on unfitted meshes and application to multiscale hybrid-mixed methods
T Chaumont-Frelet, D Paredes, F Valentin
52022
Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods
T Chaumont-Frelet, A Ern, S Lemaire, F Valentin
ESAIM: Mathematical Modelling and Numerical Analysis 56 (1), 261-285, 2022
52022
Equivalence of local-best and global-best approximations in H(curl)
T Chaumont-Frelet, M Vohralík
Calcolo 58, 1-12, 2021
52021
Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers
T Chaumont-Frelet
Calcolo 56 (4), 49, 2019
52019
Wavenumber-explicit stability and convergence analysis of hp finite element discretizations of Helmholtz problems in piecewise smooth media
M Bernkopf, T Chaumont-Frelet, JM Melenk
arXiv preprint arXiv:2209.03601, 2022
42022
A controllability method for Maxwell's equations
T Chaumont-Frelet, MJ Grote, S Lanteri, JH Tang
SIAM Journal on Scientific Computing 44 (6), A3700-A3727, 2022
42022
The system can't perform the operation now. Try again later.
Articles 1–20