Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems T Chaumont-Frelet, S Nicaise IMA Journal of Numerical Analysis 40 (2), 1503-1543, 2020 | 47 | 2020 |
Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation H Barucq, T Chaumont-Frelet, C Gout Mathematics of Computation 86 (307), 2129-2157, 2017 | 45 | 2017 |
High-frequency behaviour of corner singularities in Helmholtz problems T Chaumont-Frelet, S Nicaise ESAIM: Mathematical Modelling and Numerical Analysis 52 (5), 1803-1845, 2018 | 37 | 2018 |
Finite element approximation of Helmholtz problems with application to seismic wave propagation T Chaumont-Frelet PhD thesis, Rouen, INSA, 2015. HAL Id: tel-01246244. Available at https …, 0 | 29* | |
On high order methods for the heterogeneous Helmholtz equation T Chaumont-Frelet Computers & Mathematics with Applications 72 (9), 2203-2225, 2016 | 23 | 2016 |
A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains T Chaumont-Frelet, F Valentin SIAM Journal on Numerical Analysis 58 (2), 1029-1067, 2020 | 19 | 2020 |
Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers T Chaumont-Frelet, D Gallistl, S Nicaise, J Tomezyk Communications in Mathematical Sciences 20 (1), 1-52, 2022 | 18* | 2022 |
Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids T Chaumont-Frelet, D Pardo, Á Rodríguez-Rozas Computational Geosciences 22, 1161-1174, 2018 | 14 | 2018 |
Stable broken H (curl) polynomial extensions and p-robust a posteriori error estimates by broken patchwise equilibration for the curl-curl problem. T Chaumont-Frelet, A Ern, M Vohralík Math. Comput. 91 (333), 37-74, 2022 | 12* | 2022 |
On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation T Chaumont-Frelet, A Ern, M Vohralík Numerische Mathematik 148 (3), 525-573, 2021 | 11 | 2021 |
A painless automatic hp-adaptive strategy for elliptic problems V Darrigrand, D Pardo, T Chaumont-Frelet, I Gómez-Revuelto, ... Finite Elements in Analysis and Design 178, 103424, 2020 | 11 | 2020 |
Polynomial-degree-robust -stability of discrete minimization in a tetrahedron T Chaumont-Frelet, A Ern, M Vohralík Comptes Rendus. Mathématique 358 (9-10), 1101-1110, 2020 | 10 | 2020 |
Finite element approximation of electromagnetic fields using nonfitting meshes for geophysics T Chaumont-Frelet, S Nicaise, D Pardo SIAM Journal on Numerical Analysis 56 (4), 2288-2321, 2018 | 10 | 2018 |
Uniform a priori estimates for elliptic problems with impedance boundary conditions T Chaumont-Frelet, S Nicaise, J Tomezyk Communications on Pure and Applied Analysis, 2020 | 7 | 2020 |
Flux approximation on unfitted meshes and application to multiscale hybrid-mixed methods T Chaumont-Frelet, D Paredes, F Valentin | 5 | 2022 |
Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods T Chaumont-Frelet, A Ern, S Lemaire, F Valentin ESAIM: Mathematical Modelling and Numerical Analysis 56 (1), 261-285, 2022 | 5 | 2022 |
Equivalence of local-best and global-best approximations in H(curl) T Chaumont-Frelet, M Vohralík Calcolo 58, 1-12, 2021 | 5 | 2021 |
Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers T Chaumont-Frelet Calcolo 56 (4), 49, 2019 | 5 | 2019 |
Wavenumber-explicit stability and convergence analysis of hp finite element discretizations of Helmholtz problems in piecewise smooth media M Bernkopf, T Chaumont-Frelet, JM Melenk arXiv preprint arXiv:2209.03601, 2022 | 4 | 2022 |
A controllability method for Maxwell's equations T Chaumont-Frelet, MJ Grote, S Lanteri, JH Tang SIAM Journal on Scientific Computing 44 (6), A3700-A3727, 2022 | 4 | 2022 |