Follow
Kun Yao
Title
Cited by
Cited by
Year
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
E Epifanovsky, ATB Gilbert, X Feng, J Lee, Y Mao, N Mardirossian, ...
The Journal of chemical physics 155 (8), 2021
8542021
The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics
K Yao, JE Herr, DW Toth, R Mckintyre, J Parkhill
Chemical science 9 (8), 2261-2269, 2018
4792018
Efficient exploration of chemical space with docking and deep learning
Y Yang, K Yao, MP Repasky, K Leswing, R Abel, BK Shoichet, SV Jerome
Journal of Chemical Theory and Computation 17 (11), 7106-7119, 2021
1832021
Kinetic energy of hydrocarbons as a function of electron density and convolutional neural networks
K Yao, J Parkhill
Journal of chemical theory and computation 12 (3), 1139-1147, 2016
1352016
Intrinsic bond energies from a bonds-in-molecules neural network
K Yao, JE Herr, SN Brown, J Parkhill
The journal of physical chemistry letters 8 (12), 2689-2694, 2017
1342017
Growth of single-and bilayer ZnO on Au (111) and interaction with copper
X Deng, K Yao, K Sun, WX Li, J Lee, C Matranga
The Journal of Physical Chemistry C 117 (21), 11211-11218, 2013
1322013
The many-body expansion combined with neural networks
K Yao, JE Herr, J Parkhill
The Journal of chemical physics 146 (1), 2017
1172017
Epik: pKa and Protonation State Prediction through Machine Learning
RC Johnston, K Yao, Z Kaplan, M Chelliah, K Leswing, S Seekins, ...
Journal of chemical theory and computation 19 (8), 2380-2388, 2023
912023
Metadynamics for training neural network model chemistries: A competitive assessment
JE Herr, K Yao, R McIntyre, DW Toth, J Parkhill
The Journal of chemical physics 148 (24), 2018
802018
Machine learning for vibrational spectroscopic maps
AA Kananenka, K Yao, SA Corcelli, JL Skinner
Journal of Chemical Theory and Computation 15 (12), 6850-6858, 2019
692019
Detection of electron tunneling across plasmonic nanoparticle–film junctions using nitrile vibrations
H Wang, K Yao, JA Parkhill, ZD Schultz
Physical Chemistry Chemical Physics 19 (8), 5786-5796, 2017
352017
Compressing physics with an autoencoder: Creating an atomic species representation to improve machine learning models in the chemical sciences
JE Herr, K Koh, K Yao, J Parkhill
The Journal of chemical physics 151 (8), 2019
342019
On the border between localization and delocalization: tris (iminoxolene) titanium (IV)
T Marshall-Roth, K Yao, JA Parkhill, SN Brown
Dalton Transactions 48 (4), 1427-1435, 2019
132019
First-principles study of water activation on Cu-ZnO catalysts
K Yao, SS Wang, XK Gu, HY Su, WX Li
Chinese Journal of Catalysis 34 (9), 1705-1711, 2013
122013
Compressing physical properties of atomic species for improving predictive chemistry
JE Herr, K Koh, K Yao, J Parkhill
arXiv preprint arXiv:1811.00123, 2018
12018
The system can't perform the operation now. Try again later.
Articles 1–15