Stebėti
Chenhao Tan
Pavadinimas
Cituota
Cituota
Metai
Explaining machine learning classifiers through diverse counterfactual explanations
RK Mothilal, A Sharma, C Tan
Proceedings of the 2020 conference on fairness, accountability, and …, 2020
9762020
User-level sentiment analysis incorporating social networks
C Tan, L Lee, J Tang, L Jiang, M Zhou, P Li
Proceedings of the 17th ACM SIGKDD international conference on Knowledge …, 2011
5832011
Winning arguments: Interaction dynamics and persuasion strategies in good-faith online discussions
C Tan, V Niculae, C Danescu-Niculescu-Mizil, L Lee
Proceedings of the 25th international conference on world wide web, 613-624, 2016
3922016
On human predictions with explanations and predictions of machine learning models: A case study on deception detection
V Lai, C Tan
Proceedings of the conference on fairness, accountability, and transparency …, 2019
3532019
Creative writing with a machine in the loop: Case studies on slogans and stories
E Clark, AS Ross, C Tan, Y Ji, NA Smith
23rd International Conference on Intelligent User Interfaces, 329-340, 2018
2532018
The effect of wording on message propagation: Topic-and author-controlled natural experiments on Twitter
C Tan, L Lee, B Pang
Proceedings of ACL, 2014
2392014
Preserving causal constraints in counterfactual explanations for machine learning classifiers
D Mahajan, C Tan, A Sharma
arXiv preprint arXiv:1912.03277, 2019
2182019
Selecting directors using machine learning
I Erel, LH Stern, C Tan, MS Weisbach
The Review of Financial Studies 34 (7), 3226-3264, 2021
1902021
Towards a science of human-ai decision making: a survey of empirical studies
V Lai, C Chen, QV Liao, A Smith-Renner, C Tan
arXiv preprint arXiv:2112.11471, 2021
168*2021
On the interplay between social and topical structure
DM Romero, C Tan, J Ugander
Proc. 7th International AAAI Conference on Weblogs and Social Media (ICWSM), 2013
1452013
Neural models for documents with metadata
D Card, C Tan, NA Smith
arXiv preprint arXiv:1705.09296, 2017
143*2017
Social action tracking via noise tolerant time-varying factor graphs
C Tan, J Tang, J Sun, Q Lin, F Wang
Proceedings of the 16th ACM SIGKDD international conference on Knowledge …, 2010
1382010
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans
V Lai, H Liu, C Tan
arXiv preprint arXiv:2001.05871, 2020
1262020
Dynamic entity representations in neural language models
Y Ji, C Tan, S Martschat, Y Choi, NA Smith
arXiv preprint arXiv:1708.00781, 2017
1212017
All who wander: On the prevalence and characteristics of multi-community engagement
C Tan, L Lee
Proceedings of the 24th International Conference on World Wide Web, 1056-1066, 2015
1132015
Joint bilingual sentiment classification with unlabeled parallel corpora
B Lu, C Tan, C Cardie, BK Tsou
Proceedings of the 49th annual meeting of the association for computational …, 2011
1082011
Efficient document clustering via online nonnegative matrix factorizations
F Wang, P Li, C König
Proceedings of the 11th SIAM Conference on Data Mining, 2011
1052011
Causal reasoning and large language models: Opening a new frontier for causality
E Kıcıman, R Ness, A Sharma, C Tan
arXiv preprint arXiv:2305.00050, 2023
972023
Understanding the effect of out-of-distribution examples and interactive explanations on human-ai decision making
H Liu, V Lai, C Tan
Proceedings of the ACM on Human-Computer Interaction 5 (CSCW2), 1-45, 2021
922021
Towards unifying feature attribution and counterfactual explanations: Different means to the same end
R Kommiya Mothilal, D Mahajan, C Tan, A Sharma
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 652-663, 2021
922021
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20