On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H 1-Stability of L 2-Projection M Karkulik, D Pavlicek, D Praetorius Constructive Approximation 38, 213-234, 2013 | 124 | 2013 |
Quasi-optimal convergence rate for an adaptive boundary element method M Feischl, M Karkulik, JM Melenk, D Praetorius SIAM Journal on Numerical Analysis 51 (2), 1327-1348, 2013 | 80 | 2013 |
Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity M Aurada, M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius Computational Mechanics 51 (4), 399-419, 2013 | 74 | 2013 |
Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods M Aurada, M Feischl, T Führer, M Karkulik, D Praetorius Computational Methods in Applied Mathematics 13 (3), 305-332, 2013 | 61 | 2013 |
Space–time least-squares finite elements for parabolic equations T Führer, M Karkulik Computers & Mathematics with Applications 92, 27-36, 2021 | 56 | 2021 |
Adaptive boundary element methods: a posteriori error estimators, adaptivity, convergence, and implementation M Feischl, T Führer, N Heuer, M Karkulik, D Praetorius Archives of Computational Methods in Engineering 22 (3), 309-389, 2015 | 53 | 2015 |
A robust DPG method for singularly perturbed reaction-diffusion problems N Heuer, M Karkulik SIAM Journal on Numerical Analysis 55 (3), 1218-1242, 2017 | 46 | 2017 |
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius Calcolo 51, 531-562, 2014 | 46* | 2014 |
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius Calcolo 51, 531-562, 2014 | 43 | 2014 |
Energy norm based error estimators for adaptive BEM for hypersingular integral equations M Aurada, M Feischl, T Führer, M Karkulik, D Praetorius Applied Numerical Mathematics 95, 15-35, 2015 | 42 | 2015 |
-matrix approximability of inverses of discretizations of the fractional Laplacian M Karkulik, JM Melenk Advances in Computational Mathematics 45 (5), 2893-2919, 2019 | 36 | 2019 |
Local inverse estimates for non-local boundary integral operators M Aurada, M Feischl, T Führer, M Karkulik, J Melenk, D Praetorius Mathematics of Computation 86 (308), 2651-2686, 2017 | 35 | 2017 |
HILBERT — a MATLAB implementation of adaptive 2D-BEM: HILBERT Is a Lovely Boundary Element Research Tool M Aurada, M Ebner, M Feischl, S Ferraz-Leite, T Führer, P Goldenits, ... Numerical Algorithms 67, 1-32, 2014 | 28 | 2014 |
Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh‐refinement M Karkulik, G Of, D Praetorius Numerical methods for partial differential equations 29 (6), 2081-2106, 2013 | 22 | 2013 |
Convergence of adaptive BEM for some mixed boundary value problem M Aurada, S Ferraz-Leite, P Goldenits, M Karkulik, M Mayr, D Praetorius Applied Numerical Mathematics 62 (4), 226-245, 2012 | 21 | 2012 |
Local convergence of the FEM for the integral fractional Laplacian M Faustmann, M Karkulik, JM Melenk SIAM Journal on Numerical Analysis 60 (3), 1055-1082, 2022 | 19 | 2022 |
Local high-order regularization and applications to hp-methods M Karkulik, JM Melenk Computers & Mathematics with Applications 70 (7), 1606-1639, 2015 | 18 | 2015 |
A posteriori error estimates for the Johnson–Nédélec FEM–BEM coupling M Aurada, M Feischl, M Karkulik, D Praetorius Engineering analysis with boundary elements 36 (2), 255-266, 2012 | 18 | 2012 |
Zur Konvergenz und Quasioptimalität adaptiver Randelementmethoden M Karkulik Technische Universität Wien, 2012 | 17 | 2012 |
ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve M Feischl, T Führer, M Karkulik, D Praetorius Engineering analysis with boundary elements 38, 49-60, 2014 | 16 | 2014 |