Follow
Michael Karkulik
Title
Cited by
Cited by
Year
On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H 1-Stability of L 2-Projection
M Karkulik, D Pavlicek, D Praetorius
Constructive Approximation 38, 213-234, 2013
1242013
Quasi-optimal convergence rate for an adaptive boundary element method
M Feischl, M Karkulik, JM Melenk, D Praetorius
SIAM Journal on Numerical Analysis 51 (2), 1327-1348, 2013
802013
Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity
M Aurada, M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius
Computational Mechanics 51 (4), 399-419, 2013
742013
Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods
M Aurada, M Feischl, T Führer, M Karkulik, D Praetorius
Computational Methods in Applied Mathematics 13 (3), 305-332, 2013
612013
Space–time least-squares finite elements for parabolic equations
T Führer, M Karkulik
Computers & Mathematics with Applications 92, 27-36, 2021
562021
Adaptive boundary element methods: a posteriori error estimators, adaptivity, convergence, and implementation
M Feischl, T Führer, N Heuer, M Karkulik, D Praetorius
Archives of Computational Methods in Engineering 22 (3), 309-389, 2015
532015
A robust DPG method for singularly perturbed reaction-diffusion problems
N Heuer, M Karkulik
SIAM Journal on Numerical Analysis 55 (3), 1218-1242, 2017
462017
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation
M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius
Calcolo 51, 531-562, 2014
46*2014
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation
M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius
Calcolo 51, 531-562, 2014
432014
Energy norm based error estimators for adaptive BEM for hypersingular integral equations
M Aurada, M Feischl, T Führer, M Karkulik, D Praetorius
Applied Numerical Mathematics 95, 15-35, 2015
422015
-matrix approximability of inverses of discretizations of the fractional Laplacian
M Karkulik, JM Melenk
Advances in Computational Mathematics 45 (5), 2893-2919, 2019
362019
Local inverse estimates for non-local boundary integral operators
M Aurada, M Feischl, T Führer, M Karkulik, J Melenk, D Praetorius
Mathematics of Computation 86 (308), 2651-2686, 2017
352017
HILBERT — a MATLAB implementation of adaptive 2D-BEM: HILBERT Is a Lovely Boundary Element Research Tool
M Aurada, M Ebner, M Feischl, S Ferraz-Leite, T Führer, P Goldenits, ...
Numerical Algorithms 67, 1-32, 2014
282014
Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh‐refinement
M Karkulik, G Of, D Praetorius
Numerical methods for partial differential equations 29 (6), 2081-2106, 2013
222013
Convergence of adaptive BEM for some mixed boundary value problem
M Aurada, S Ferraz-Leite, P Goldenits, M Karkulik, M Mayr, D Praetorius
Applied Numerical Mathematics 62 (4), 226-245, 2012
212012
Local convergence of the FEM for the integral fractional Laplacian
M Faustmann, M Karkulik, JM Melenk
SIAM Journal on Numerical Analysis 60 (3), 1055-1082, 2022
192022
Local high-order regularization and applications to hp-methods
M Karkulik, JM Melenk
Computers & Mathematics with Applications 70 (7), 1606-1639, 2015
182015
A posteriori error estimates for the Johnson–Nédélec FEM–BEM coupling
M Aurada, M Feischl, M Karkulik, D Praetorius
Engineering analysis with boundary elements 36 (2), 255-266, 2012
182012
Zur Konvergenz und Quasioptimalität adaptiver Randelementmethoden
M Karkulik
Technische Universität Wien, 2012
172012
ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve
M Feischl, T Führer, M Karkulik, D Praetorius
Engineering analysis with boundary elements 38, 49-60, 2014
162014
The system can't perform the operation now. Try again later.
Articles 1–20