Yannis Assael
Yannis Assael
Kiti vardaiIoannis Assael, Ioannis Alexandros Assael, John Alexander Assael
Staff Research Scientist, Google DeepMind
Patvirtintas el. paštas - Pagrindinis puslapis
Learning to communicate with deep multi-agent reinforcement learning
JN Foerster, YM Assael, N de Freitas, S Whiteson
Advances in Neural Information Processing Systems, 2145-2153, 2016
LipNet: end-to-end sentence-level lipreading
YM Assael, B Shillingford, S Whiteson, N De Freitas
GPU Technology Conference, 2017
Effective gene expression prediction from sequence by integrating long-range interactions
Z Avsec, V Agarwal, D Visentin, JR Ledsam, A Grabska-Barwinska, ...
Nature Methods 18 (10), 1196-1203, 2021
Large-scale visual speech recognition
B Shillingford, Y Assael, MW Hoffman, T Paine, C Hughes, U Prabhu, ...
INTERSPEECH, 4135-4139, 2019
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
Gemini Team, Google
arXiv preprint arXiv:2403.05530v3, 2024
Multi-objective deep reinforcement learning
H Mossalam, YM Assael, DM Roijers, S Whiteson
Advances in Neural Information Processing Systems Deep Reinforcement …, 2016
Learning to communicate to solve riddles with deep distributed recurrent Q-networks
JN Foerster, YM Assael, N de Freitas, S Whiteson
International Joint Conferences on Artificial Intelligence Workshop, 2016
Sample efficient adaptive text-to-speech
Y Chen, Y Assael, B Shillingford, D Budden, S Reed, H Zen, Q Wang, ...
International Conference on Learning Representations, 2019
Recurrent neural network transducer for audio-visual speech recognition
T Makino, H Liao, Y Assael, B Shillingford, B Garcia, O Braga, O Siohan
IEEE Automatic Speech Recognition and Understanding Workshop, 2019
Restoring and attributing ancient texts using deep neural networks
Y Assael, T Sommerschield, B Shillingford, M Bordbar, J Pavlopoulos, ...
Nature 603 (7900), 280-283, 2022
Restoring ancient text using deep learning: a case study on Greek epigraphy
Y Assael, T Sommerschield, J Prag
Empirical Methods in Natural Language Processing, 6369-6376, 2019
Correlation of the thermal conductivity of normal and parahydrogen from the triple point to 1000 K and up to 100 MPa
MJ Assael, YM Assael, ML Huber, RA Perkins, Y Takata
Journal of Physical and Chemical Reference Data 40 (3), 033101-033101-13, 2011
Cortical microcircuits as gated-recurrent neural networks
R Ponte Costa, Y Assael, B Shillingford, N de Freitas, T Vogels
Advances in Neural Information Processing Systems, 272-283, 2017
Using deep Q-learning to understand the tax evasion behavior of risk-averse firms
ND Goumagias, D Hristu-Varsakelis, YM Assael
Expert Systems with Applications 101, 258-270, 2018
Speech bandwidth extension with WaveNet
A Gupta, B Shillingford, Y Assael, TC Walters
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2019
Machine learning for ancient languages: a survey
T Sommerschield, Y Assael, J Pavlopoulos, V Stefanak, A Senior, C Dyer, ...
Computational Linguistics 49 (2), 1-44, 2023
A novel portable absolute transient hot-wire instrument for the measurement of the thermal conductivity of solids
MJ Assael, KD Antoniadis, IN Metaxa, SK Mylona, JAM Assael, J Wu, ...
International Journal of Thermophysics 36 (10-11), 3083-3105, 2015
Heteroscedastic treed bayesian optimisation
JAM Assael, Z Wang, B Shahriari, N de Freitas
Advances in Neural Information Processing Systems Workshop on Bayesian …, 2014
Large-scale multilingual audio visual dubbing
Y Yang, B Shillingford, Y Assael, M Wang, W Liu, Y Chen, Y Zhang, ...
arXiv preprint arXiv:2011.03530, 2020
Data-efficient learning of feedback policies from image pixels using deep dynamical models
JAM Assael, N Wahlström, TB Schön, MP Deisenroth
Advances in Neural Information Processing Systems Deep Reinforcement …, 2015
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20