U-air: When urban air quality inference meets big data Y Zheng, F Liu, HP Hsieh Proceedings of the 19th ACM SIGKDD international conference on Knowledge
, 2013 | 1105 | 2013 |
Causalvae: Disentangled representation learning via neural structural causal models M Yang, F Liu, Z Chen, X Shen, J Hao, J Wang Proceedings of the IEEE/CVF conference on computer vision and pattern
, 2021 | 253 | 2021 |
Learning to select cuts for efficient mixed-integer programming Z Huang, K Wang, F Liu, HL Zhen, W Zhang, M Yuan, J Hao, Y Yu, ... Pattern Recognition 123, 108353, 2022 | 67 | 2022 |
Weakly supervised disentangled generative causal representation learning X Shen, F Liu, H Dong, Q Lian, Z Chen, T Zhang Journal of Machine Learning Research 23 (241), 1-55, 2022 | 58 | 2022 |
Shapley counterfactual credits for multi-agent reinforcement learning J Li, K Kuang, B Wang, F Liu, L Chen, F Wu, J Xiao Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
, 2021 | 58 | 2021 |
Disentangled generative causal representation learning X Shen, F Liu, H Dong, L Qing, Z Chen, T Zhang | 49 | 2020 |
Causal inference on discrete data via estimating distance correlations F Liu, L Chan Neural computation 28 (5), 801-814, 2016 | 40 | 2016 |
DARING: Differentiable causal discovery with residual independence Y He, P Cui, Z Shen, R Xu, F Liu, Y Jiang Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data
, 2021 | 33 | 2021 |
Causalvae: Structured causal disentanglement in variational autoencoder M Yang, F Liu, Z Chen, X Shen, J Hao, J Wang arXiv preprint arXiv:2004.08697, 2020 | 32 | 2020 |
Efficient and accurate large library ligand docking with KarmaDock X Zhang, O Zhang, C Shen, W Qu, S Chen, H Cao, Y Kang, Z Wang, ... Nature Computational Science 3 (9), 789-804, 2023 | 29 | 2023 |
Traj-mae: Masked autoencoders for trajectory prediction H Chen, J Wang, K Shao, F Liu, J Hao, C Guan, G Chen, PA Heng Proceedings of the IEEE/CVF International Conference on Computer Vision
, 2023 | 28 | 2023 |
ResGen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling O Zhang, J Zhang, J Jin, X Zhang, RL Hu, C Shen, H Cao, H Du, Y Kang, ... Nature Machine Intelligence 5 (9), 1020-1030, 2023 | 26 | 2023 |
Contrastive-ACE: Domain generalization through alignment of causal mechanisms Y Wang, F Liu, Z Chen, YC Wu, J Hao, G Chen, PA Heng IEEE Transactions on Image Processing 32, 235-250, 2022 | 25 | 2022 |
Uncertainty estimation by fisher information-based evidential deep learning D Deng, G Chen, Y Yu, F Liu, PA Heng International Conference on Machine Learning, 7596-7616, 2023 | 21 | 2023 |
Caussl: Causality-inspired semi-supervised learning for medical image segmentation J Miao, C Chen, F Liu, H Wei, PA Heng Proceedings of the IEEE/CVF International Conference on Computer Vision
, 2023 | 21 | 2023 |
Deconfounded value decomposition for multi-agent reinforcement learning J Li, K Kuang, B Wang, F Liu, L Chen, C Fan, F Wu, J Xiao International Conference on Machine Learning, 12843-12856, 2022 | 20 | 2022 |
Causal inference on multidimensional data using free probability theory F Liu, LW Chan IEEE transactions on neural networks and learning systems 29 (7), 3188-3198, 2017 | 15 | 2017 |
Causal Discovery on Discrete Data with Extensions to Mixture Model F Liu, L Chan ACM Transactions on Intelligent Systems and Technology (TIST) 7 (2), 2016 | 13 | 2016 |
Learning from good trajectories in offline multi-agent reinforcement learning Q Tian, K Kuang, F Liu, B Wang Proceedings of the AAAI Conference on Artificial Intelligence 37 (10), 11672
, 2023 | 10 | 2023 |
Causal world models by unsupervised deconfounding of physical dynamics M Li, M Yang, F Liu, X Chen, Z Chen, J Wang arXiv preprint arXiv:2012.14228, 2020 | 9 | 2020 |