Layer-parallel training of deep residual neural networks S Gunther, L Ruthotto, JB Schroder, EC Cyr, NR Gauger SIAM Journal on Mathematics of Data Science 2 (1), 1-23, 2020 | 119 | 2020 |
Simultaneous single-step one-shot optimization with unsteady PDEs S Guenther, NR Gauger, Q Wang Journal of Computational and Applied Mathematics 294, 12-22, 2016 | 32 | 2016 |
One-shot approaches to design optimzation T Bosse, NR Gauger, A Griewank, S Günther, V Schulz Trends in PDE constrained optimization, 43-66, 2014 | 31 | 2014 |
A non-intrusive parallel-in-time approach for simultaneous optimization with unsteady PDEs S Günther, NR Gauger, JB Schroder Optimization Methods and Software 34 (6), 1306-1321, 2019 | 27 | 2019 |
Quandary: An open-source C++ package for high-performance optimal control of open quantum systems S Günther, NA Petersson, JL DuBois 2021 IEEE/ACM Second International Workshop on Quantum Computing Software
, 2021 | 24 | 2021 |
A non-intrusive parallel-in-time adjoint solver with the XBraid library S Günther, NR Gauger, JB Schroder Computing and Visualization in Science 19, 85-95, 2018 | 21 | 2018 |
Quantum Optimal Control for Pure-State Preparation Using One Initial State S Günther, NA Petersson, JL DuBois arXiv preprint arXiv:2106.09148, 2021 | 17 | 2021 |
Multilevel initialization for layer-parallel deep neural network training EC Cyr, S Günther, JB Schroder arXiv preprint arXiv:1912.08974, 2019 | 11 | 2019 |
A framework for simultaneous aerodynamic design optimization in the presence of chaos S Günther, NR Gauger, Q Wang Journal of Computational Physics 328, 387-398, 2017 | 11 | 2017 |
Optimal design with bounded retardation for problems with non-separable adjoints T Bosse, NR Gauger, A Griewank, S Günther, L Kaland, C Kratzenstein, ... Trends in PDE Constrained Optimization, 67-84, 2014 | 8 | 2014 |
Extension of the One-shot method for optimal control with unsteady PDEs S Günther, NR Gauger, Q Wang Advances in Evolutionary and Deterministic Methods for Design, Optimization
, 2015 | 7 | 2015 |
Spline parameterization of neural network controls for deep learning S Günther, W Pazner, D Qi arXiv preprint arXiv:2103.00301, 2021 | 6 | 2021 |
Quantum Physics without the Physics NA Petersson, F Garcia, DEA Appelo, S Günther, Y Choi, R Vogt arXiv preprint arXiv:2012.03865, 2020 | 4 | 2020 |
Parallel-in-time solution of power systems with unscheduled events S Günther, RD Falgout, P Top, CS Woodward, JB Schroder 2020 IEEE Power & Energy Society General Meeting (PESGM), 1-5, 2020 | 4 | 2020 |
Simultaneous optimization with unsteady partial differential equations S Günther Universitätsbibliothek der RWTH Aachen, 2017 | 3 | 2017 |
Multigrid Reduction in Time for Chaotic Dynamical Systems DA Vargas, RD Falgout, S Günther, JB Schroder SIAM Journal on Scientific Computing 45 (4), A2019-A2042, 2023 | 2 | 2023 |
Data-Driven Characterization of Latent Dynamics on Quantum Testbeds S Reddy, S Guenther, Y Cho arXiv preprint arXiv:2401.09822, 2024 | 1 | 2024 |
Toward Parallel in Time for Chaotic Dynamical Systems DA Vargas, RD Falgout, S Günther, JB Schroder arXiv preprint arXiv:2201.10441, 2022 | 1 | 2022 |
A time-parallel multiple-shooting method for large-scale quantum optimal control NA Petersson, S Günther, SW Chung arXiv preprint arXiv:2407.13950, 2024 | | 2024 |
A practical approach to determine minimal quantum gate durations using amplitude-bounded quantum controls S Günther, NA Petersson AVS Quantum Science 5 (4), 2023 | | 2023 |