Multidimensional inverse spectral problem for the equation —Δ*ψ* + (v(x) — Eu(x))*ψ* = 0RG Novikov Functional Analysis and Its Applications 22 (4), 263-272, 1988 | 474 | 1988 |

An inversion formula for the attenuated X-ray transformation RG Novikov Arkiv för matematik 40 (1), 145-167, 2002 | 388 | 2002 |

The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator RG Novikov Journal of functional analysis 103 (2), 409-463, 1992 | 202 | 1992 |

The-equation in the multidimensional inverse scattering problem RG Novikov, GM Khenkin Russian Mathematical Surveys 42 (3), 109, 1987 | 181 | 1987 |

On the range characterization for the two-dimensional attenuated x-ray transformation RG Novikov Inverse problems 18 (3), 677, 2002 | 95 | 2002 |

The -approach to approximate inverse scattering at fixed energy in three dimensions RG Novikov International Mathematics Research Papers 2005 (6), 287-349, 2005 | 88 | 2005 |

The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential RG Novikov Communications in mathematical physics 161, 569-595, 1994 | 78 | 1994 |

Formulas for phase recovering from phaseless scattering data at fixed frequency RG Novikov Bulletin des Sciences Mathématiques 139 (8), 923-936, 2015 | 75 | 2015 |

Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials PG Grinevich, RG Novikov Communications in mathematical physics 174 (2), 409-446, 1995 | 73 | 1995 |

Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions RG Novikov The Journal of Geometric Analysis 26 (1), 346-359, 2016 | 66 | 2016 |

A multidimensional inverse problem in quantum and acoustic scattering GM Henkin, RG Novikov Inverse problems 4 (1), 103, 1988 | 57 | 1988 |

Monochromatic reconstruction algorithms for two-dimensional multi-channel inverse problems RG Novikov, M Santacesaria International Mathematics Research Notices 2013 (6), 1205-1229, 2013 | 53 | 2013 |

Rapidly converging approximation in inverse quantum scattering in dimension 2 RG Novikov Physics Letters A 238 (2-3), 73-78, 1998 | 52 | 1998 |

On determination of a gauge field on ℝd from its non-abelian Radon transform along oriented straight lines RG Novikov Journal of the Institute of Mathematics of Jussieu 1 (4), 559-629, 2002 | 49 | 2002 |

Discrete analogues of δ-equation and of Radon transform AS Fokas, RG Novikov Comptes rendus de l'Académie des sciences. Série 1, Mathématique 313 (2), 75-80, 1991 | 49 | 1991 |

Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude for fixed energy RG Novikov Functional analysis and its applications 20 (3), 246-248, 1986 | 49 | 1986 |

Construction of two-dimensional Schrodinger operator with given scattering amplitude at fixed energy RG Novikov Theor. Math. Phys.;(United States) 66 (2), 1986 | 48 | 1986 |

On single-photon emission computed tomography imaging based on an exact formula for the nonuniform attenuation correction JP Guillement, F Jauberteau, L Kunyansky, R Novikov, R Trebossen Inverse Problems 18 (6), L11, 2002 | 45 | 2002 |

Une formule d'inversion pour la transformation d'un rayonnement X atténué RG Novikov Comptes Rendus de l'Académie des Sciences-Series I-Mathematics 332 (12 …, 2001 | 44 | 2001 |

Approximate inverse quantum scattering at fixed energy in dimension 2 RG Novikov Trudy Matematicheskogo Instituta Imeni VA Steklova 225, 301-318, 1999 | 43 | 1999 |