Stebėti
Nisha Chandramoorthy
Nisha Chandramoorthy
Patvirtintas el. paštas uchicago.edu - Pagrindinis puslapis
Pavadinimas
Cituota
Cituota
Metai
Feasibility analysis of ensemble sensitivity computation in turbulent flows
N Chandramoorthy, P Fernandez, C Talnikar, Q Wang
AIAA Journal 57 (10), 4514-4526, 2019
54*2019
On the probability of finding nonphysical solutions through shadowing
N Chandramoorthy, Q Wang
Journal of Computational Physics 440, 110389, 2021
262021
A computable realization of Ruelle's formula for linear response of statistics in chaotic systems
N Chandramoorthy, Q Wang
arXiv preprint arXiv:2002.04117, 2020
212020
On the generalization of learning algorithms that do not converge
N Chandramoorthy, A Loukas, K Gatmiry, S Jegelka
NeurIPS 2022, 2022
152022
Ergodic sensitivity analysis of one-dimensional chaotic maps
AA Śliwiak, N Chandramoorthy, Q Wang
Theoretical and Applied Mechanics Letters 10 (6), 438-447, 2020
152020
Efficient computation of linear response of chaotic attractors with one-dimensional unstable manifolds
N Chandramoorthy, Q Wang
SIAM Journal on Applied Dynamical Systems 21 (2), 735-781, 2022
132022
Computational assessment of smooth and rough parameter dependence of statistics in chaotic dynamical systems
AA Śliwiak, N Chandramoorthy, Q Wang
Communications in Nonlinear Science and Numerical Simulation 101, 105906, 2021
122021
Toward computing sensitivities of average quantities in turbulent flows
N Chandramoorthy, ZN Wang, Q Wang, P Tucker
arXiv preprint arXiv:1902.11112, 2019
112019
Rigorous justification for the space–split sensitivity algorithm to compute linear response in Anosov systems
N Chandramoorthy, M Jézéquel
Nonlinearity 35 (8), 4357, 2022
102022
An ergodic-averaging method to differentiate covariant Lyapunov vectors: Computing the curvature of one-dimensional unstable manifolds of strange attractors
N Chandramoorthy, Q Wang
Nonlinear Dynamics 104, 4083-4102, 2021
92021
Variational optimization and data assimilation in chaotic time-delayed systems with automatic-differentiated shadowing sensitivity
N Chandramoorthy, L Magri, Q Wang
arXiv preprint arXiv:2011.08794, 2020
92020
Sensitivity computation of statistically stationary quantities in turbulent flows
N Chandramoorthy, Q Wang
AIAA Aviation 2019 Forum, 3426, 2019
72019
Solving lubrication problems at the nanometer scale
N Chandramoorthy, NG Hadjiconstantinou
Microfluidics and Nanofluidics 22, 1-12, 2018
62018
Algorithmic differentiation of shadowing sensitivities in chaotic systems
N Chandramoorthy, Q Wang, L Magri, SHK Narayanan, P Hovland, A Ni
SIAM Workshop on Combinatorial Scientific Computing, 1-18, 2018
62018
An efficient algorithm for sensitivity analysis of chaotic systems
N Chandramoorthy
Massachusetts Institute of Technology, 2021
52021
A Reynolds lubrication equation for dense fluids valid beyond Navier-Stokes
N Chandramoorthy, N Hadjiconstantinou
APS Division of Fluid Dynamics Meeting Abstracts, E22. 001, 2016
42016
When are dynamical systems learned from time series data statistically accurate?
J Park, N Yang, N Chandramoorthy
NeurIPS 2024, 2024
32024
Molecular dynamics-based approaches for mesoscale lubrication
N Chandramoorthy
Massachusetts Institute of Technology, 2016
22016
Sensitivity analysis of hydrodynamic chaos in combustion using NILSS-AD
N Chandramoorthy, Q Wang, L Magri, SHK Narayanan, P Hovland
APS Division of Fluid Dynamics Meeting Abstracts, Q1. 001, 2017
12017
Score Operator Newton transport
N Chandramoorthy, FT Schaefer, YM Marzouk
International Conference on Artificial Intelligence and Statistics, 3349-3357, 2024
2024
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20